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The lifetime of a metastable state in the transient dynamics of an overdamped Brownian particle is analyzed,
both in terms of the mean first passage time and by means of the mean growth rate coefficient. Both quantities
feature nonmonotonic behaviors as a function of the noise intensity, and are independent signatures of the noise
enhanced stability effect. They can therefore be alternatively used to evaluate and estimate the presence of this
phenomenon, which characterizes metastability in nonlinear physical systems.
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I. INTRODUCTION

Metastability is a generic feature of many nonlinear sys-
tems, and the problem of the lifetime of a metastable state
involves fundamental aspects of nonequilibrium statistical
mechanics �1�. Metastable states, indeed, have been proved
to play a crucial role, e.g., in protein folding dynamics, Ising
spin glasses, complex dynamics of large molecules at sur-
faces, enhancement of cellular memory, and in dynamics of
cellular reactive oxygen species �2�. The problem of the life-
time of a metastable state has been addressed in a variety of
areas, including first-order phase transitions, Josephson junc-
tions, field theory, and chemical kinetics �3�.

Recently, the investigation of nonlinear dynamics in the
presence of external noisy sources led to the discovery of
some resonancelike phenomena, among which we recall sto-
chastic resonance �4�, resonant activation �5�, and noise en-
hanced stability �NES� �6–8�. All these phenomena are char-
acterized by a nonmonotonic behavior of some quantity as a
function of the forcing noise intensity or the driving fre-
quency, which reflects a constructive and counterintuitive ef-
fect of the noise acting on the nonlinear system. In particular,
several theoretical studies have shown that the average es-
cape time from a metastable state in fluctuating and static
potentials has a nonmonotonic behavior as a function of the
noise intensity �8–13�. This resonancelike behavior, which
contradicts the monotonic behavior predicted by Kramers
theory �14,15�, is called the NES phenomenon: the stability
of metastable or unstable states can be enhanced by the noise
and the average lifetime of the metastable state is larger than
the deterministic decay time. Furthermore, if more realistic
noise sources �such as colored noise with a finite correlation
time� are considered, the value of the noise intensity at which
the maximum of the average escape time occurs is even
larger than that corresponding to the white noise case, mean-
ing that the NES effect could be easy to measure experimen-
tally, because of the finite time correlations involved in any
realistic noisy sources �12�.

When considering a Brownian particle in the presence of
a metastable fluctuating potential, the NES effect is always

obtained �6,8�, regardless of the unstable initial position of
the particle. More precisely, two different dynamical regimes
occur: one is characterized by a nonmonotonic behavior of
the average escape time, as a function of noise intensity, and
the other features a divergence of the mean escape time when
the noise intensity tends to zero, implying that the Brownian
particle remains trapped within the metastable state in the
limit of small noise intensities. The description of the transi-
tion from one dynamical regime to the other is yet an open
question.

In this paper we analyze in more detail the divergent dy-
namical regime, and suggest an approach for detecting the
stability of metastable states, that is alternative to the mean-
first-passage-time �MFPT� technique. In particular, we find a
nonmonotonic behavior of the MFPT with a minimum and a
maximum as a function of the noise intensity for initial po-
sitions of the Brownian particle close to the point xc where
the potential shape intersects the x axis �see the inset of Fig.
1�. In this regime the standard deviation of the escape time
has a divergent behavior for small noise intensity. This
means that the average escape time, which is a quantitative
measure of the average lifetime of the metastable state, has
in fact some statistical limitations to fully describe the sta-
bility of metastable states.

To complement the analysis of the transient dynamics of
metastable states, we then introduce a different approach,
based on the evaluation of the mean growth rate coefficient
� as a function of the noise intensity. The � coefficient is
evaluated by the use of a procedure similar to that for the
calculation of the Lyapunov exponent in stochastic systems,
e.g., we consider the evolution of the separation �x�t� be-
tween two neighboring trajectories of the Brownian particle
�16–19�. We will show that also the � coefficient displays a
nonmonotonic behavior �with a clear minimum� as a func-
tion of the noise intensity, thus representing an independent
way for detecting and estimating the NES effect. The paper
is organized as follows. In the next section the divergent
dynamical regime of the MFPT and its standard deviation are
considered. In the third section we introduce a new physical
quantity, that is the mean growth rate coefficient, which is
useful to characterize the transient dynamics of metastable
states. In the final section we draw the conclusions.*Email address: afiasconaro@gip.dft.unipa.it
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II. MEAN FIRST PASSAGE TIME

The starting point of our analysis is a Brownian particle in
one spatial dimension, obeying the following Langevin equa-
tion:

ẋ = −
dU�x�

dx
+ �D��t� , �1�

where ��t� is a white Gaussian noise source with zero mean
and � correlated in time ����t��=0 and ���t���t+���=�����,
and U�x�=0.3x2−0.2x3 is a cubic potential, whose shape is
shown in the inset of Fig. 1. The potential profile has a local
stable state at xs=0, an unstable state at xu=1, and intersects
the x axis at xc=1.5.

After fixing a given target position xF�xc, the MFPT
��x0 ,xF� �the average time for a particle starting from an
initial position x0 to reach xF� is given by the closed analyti-
cal expression �15,20�

��x0,xF� =
2

D
�

x0

xF

e2u�z��
−�

z

e−2u�y�dydz , �2�

where u�x�=U�x� /D is the dimensionless potential profile,
obtained by normalizing U�x� to the noise intensity D. The
double integral �2� can be evaluated �in part analytically, in
part numerically�, giving rise to

��x0,xF� =
2

D
�

x0

xF

e2u�z�G�z�dz , �3�

where G�z�=0.6046e−z�I−1/3�z�+ I1/3�z��− 1
2 2F2

� 1
2 ,1 ; 2

3 , 4
3 ;

−2z�+	0
ze−2u�y�dy, z=1/ �10D�, In�z� is the modified Bessel

function of the first kind, and pFq�a1 ,a2 ;b1 ,b2 ;z� is the gen-
eralized hypergeometric function.

In Fig. 1 the evaluation of expression �3� for xF=2.2 and
for different initial positions x0 �as sketched in the legend� is
reported. Two different regimes can be observed, depending
on the initial state of the particle: �i� the NES effect for all
initial conditions x0�xc, and �ii� the divergent regime for
xu�x0	xc, where xu=1 is the location of the relative maxi-
mum of the potential profile. The intersection point xc corre-
sponds to the unstable point xu, in the limit D→0, with
respect to the stability of the metastable state. In fact when
the Brownian particle goes away from this point the average
lifetime diverges for x0	xc and it is equal to the determin-
istic escape time for x0
xc �see Fig. 2�.

In this latter regime, for all initial positions x0 smaller
than �but sufficiently close to� xc, the MFPT displays a non-
monotonic behavior with a minimum and a maximum. For
very low noise intensities, the Brownian particle is trapped
into the potential well, as a consequence of the divergence of
the MFPT in the limit D→0. For increasing noise intensity,
the particle can escape out more easily, and the MFPT de-
creases. As the noise intensity reaches a value D
�U=0.1

FIG. 1. �Color online� MFPT ��x0 ,xF� evaluated from expres-
sion �3� vs the noise intensity D, for xF=2.2 and for different initial
positions x0 �see the legend�. The NES effect is observed for
x0�xc, while the divergence regime corresponds to xu	x0	xc.
Inset: the cubic potential U�x� with the metastable state at x=0. The
arrow indicates the intersection point xc=1.5 between the potential
curve and the horizontal axis.

FIG. 2. Critical stability positions for noiseless and noisy statis-
tics. In the first case �D=0� a particle starting from the position
x0=xu−� has an escape time ��xu

−� equal to infinity, and a particle
starting form the position x0=xu+� has an escape time equal to the
deterministic one �xu

+ =�det. The same behavior is recognized in the
second case �D�0� in the limit D→0 for the critical position xc.
This means that the “unstable equilibrium” position in the stochas-
tic case �from the point of view of the stability of the metastable
state� is not x0=xu, but x0=xc.
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�corresponding to the potential barrier height�, the concavity
of the MFPT curves changes. Close to such a noise intensity,
the escape process of the Brownian particle is slowed down,
due to the fact that the probability to reenter the well is
increased. At higher noise intensities, one recovers a mono-
tonic decreasing behavior of the MFPT. In summary, from
inspection of Fig. 1, the behavior of MFPT vs D goes with
continuity from a monotonic divergent behavior to a non-
monotonic finite behavior �typical NES effect�, passing
through a nonmonotonic divergent behavior with a minimum
and a maximum.

In the following we will focus on this last dynamical re-
gime. First of all, we compare the theoretical results of Fig. 1
with direct numerical simulations of Eq. �1�. Namely, we
numerically integrate Eq. �1� with different initial conditions
x0
xc. For each initial condition �and for each value of the
noise intensity D�, the integration is performed over an en-
semble of NR=350 000 different realizations of the white
noise process ��t�. The target position xF=2.2 is selected, and
the MFPT �calculated as the ensemble average of the first
passage times through xF for different noise realizations� is
reported in Fig. 3, together with the corresponding theoreti-
cal curves. The agreement between theoretical predictions
and numerical simulations is very good. For low values of D,
however, we cannot reproduce the theoretical curves because
of the finiteness of the integration time �Tmax=20 000 a.u.�.
and of the number of realizations. The MFPT evaluated in
this range of noise intensities, therefore, tends to the deter-
ministic escape time.

The numerical study of Eq. �1� allows us to also calculate
the standard deviation � of the set of first passage times
obtained for different noise realizations. The results are
shown in the inset of Fig. 3 for the same values of x0, where
a divergent behavior of ��D� is visible in the limit D→0.
Such a feature confirms that the only information on the
MFPT is not sufficient to fully unravel the statistical proper-

ties of this dynamical regime, and motivated our search for a
complementary approach.

III. MEAN GROWTH RATE COEFFICIENT

This approach is done by monitoring the properties of the
mean growth rate coefficient �. Let �x0=�x�t=0��1 be the
initial separation of two neighboring Brownian particles sub-
jected to the same noise process ��t�. By linearization of Eq.
�1�, the evolution of the particle separation �x�t� is given by

�ẋ�t� = −
d2U�x�

dx2 �x�t� = �i�x,t��x�t� , �4�

and allows for the definition of an instantaneous growth rate
�i�x , t�. It is important to stress that, in Eq. �4�, d2U�x� /dx2 is
calculated onto �and as so, it is a function of� the noisy
trajectory x���t�� �21�. The growth rate coefficient �i �for the
ith noise realization�, is then defined as the longtime average
of the instantaneous �i coefficient over ��x0 ,xF� �16–19�

�i =
1

��x0,xF��0

��x0,xF�

�i�x,s�ds . �5�

Notice that, in the limit ��x0 ,xF�→�, Eq. �5� coincides
formally with the definition of the maximum Lyapunov ex-
ponent, and that, therefore, our �i coefficient has the mean-
ing of a finite-time Lyapunov exponent, since we are inter-
esting in characterizing a transient dynamics. The mean
growth rate coefficient �MGRC� � is then obtained by en-
semble averaging the �i coefficients over the NR different
noise realizations ��=��i /NR�.

In our simulations of Eq. �4�, an integration time step of
dt=0.0001, and an initial condition �x0=0.01 are used. The
instantaneous growth rate �i�x , t� is calculated over N� small
subintervals of the trajectory, each of them corresponding to
a time interval �=5dt.

In Fig. 4 we report the behavior of �i�x , t� as a function of
time for D=1. The �i�x , t� coefficient is negative for most of
the time, due to noise-induced local stability of metastable
state. As the Brownian particle reaches the point at which the
potential changes its concavity, �i�x , t� becomes positive. As
for the � coefficient, fixing xF=20, it displays a nonmono-
tonic behavior with a minimum as a function of noise inten-

FIG. 3. �Color online� Numerical estimation of the MFPT �sym-
bols� vs D for x0=1.46 �filled circles�, x0=1.47 �empty circles�, and
x0=1.48 �filled triangles�. The solid curves are the corresponding
estimations of the MFPT from Eq. �3�. Inset: standard deviation �
of MFPT’s corresponding to different noise realizations vs D for the
same initial positions x0.

FIG. 4. �i�x , t� �see text for definition� vs time, for x0=1.3,
xF=3, and D=1.
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sity �see Fig. 5�b��, though being always positive. This re-
flects the fact that the Brownian particles always escape in
average from the metastable state, but the nonmonotonic be-
havior of the MGRC marks the presence of the NES effect.
In particular, the closer the initial positions of the particles
are to xu, the smaller the MGRC. Notice that �i�x , t� is pro-
portional to the trajectory of the Brownian particle because
the potential is a cubic one. Any metastable state, however,
can be described through a local cubic potential even if the
real potential has other local or global stable states.

Figure 5 is a comparative plot of the numerically calcu-
lated MFPT �a� and the corresponding MGRC �b� vs D for
various initial positions of the Brownian particles. The
MFPT’s plot �Fig. 5�a�� shows the divergent behavior as a
maximum, which is shifted towards lower values of the noise
intensity. Because of the finiteness of the ensemble of par-
ticles considered in our numerical experiments, observation
of the divergence in time is prevented in our simulations, and
for very low noise intensities �D→0� the deterministic es-

cape time is retrieved. The trajectories of the Brownian par-
ticles trapped into the potential well in the limit of D→0
lead to the singularity of the MFPT observed in theoretical
evaluation of Fig. 1. However, the observation time in a digi-
tal simulation is finite and for some value of noise intensity it
becomes smaller than the average escape time of a particle
trapped in the well. Therefore, the simulated escape time has
a maximum at this point. Besides, the ensemble of particles
in a numerical experiment is also finite. So for D→0, when
the probability for a particle to be trapped in the well de-
creases exponentially to zero, we do not observe such par-
ticles in simulations and the MFPT tends to the deterministic
escape time at D→0 �see Fig. 5�a�� �11�.

As can be seen in Fig. 5�b�, the maximum of the MFPT
curve is reflected by a local minimum in the MGRC shape,
which is, however, slightly shifted towards lower values of
the noise intensity. This is because, at low noise intensities,
not all the particles coming back into the potential well reach
positions around the metastable state with positive concavity,
which instead will be attained by particles experiencing
larger noise kicks. These latter ones contribute to lower the
value of �, due to the negative contributions of the �i’s cor-
responding to such positions �see Fig. 4�.

We note that the behavior of the MGRC as a function of
the noise intensity is strongly affected by the characteristic
potential shape of a metastable state. In order to clarify the
behavior of MGRC in the limit of D→0 we report in Fig. 6
the number N of the Brownian particles that reach the posi-
tion x=0.5 as a function of the noise intensity. This is the flex
point of the potential where the instantaneous growth rate
�i�x , t� is equal to zero. We see that for low noise intensities
this number goes to zero, producing an increasing behavior
of the MGRC �see Fig. 5�b��.

IV. CONCLUSIONS

It is worthwhile to note that the divergence of standard
deviation of MFPT when D→0 corresponds to a big tail in
the first passage time distribution �see Refs. �8,10�, where
this point is explained in detail�. This means that the tempo-
rary trapping of the particle into the potential well is a rare
event, which strongly affects the average lifetime of the
metastable state. As a consequence the value of MFPT in-
creases with decreasing noise intensities, giving rise to a

FIG. 5. �Color online� �a� Numerical estimation of the MFPT for
various initial positions �as in the legend� and �b� the corresponding
MGRC vs the noise intensity D. The average has been performed
over 20 000 realizations. The absorbing boundary is xF=20, and the
maximum waiting time used in the simulations is Tmax=20 000.

FIG. 6. Number of trajectories reaching the position x=0.5 in-
side the potential well. In this position the instantaneous growth rate
�i�x , t� is equal to zero.
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more pronounced maximum �see Fig. 5�b��. Moreover, tem-
porary trapped particles have trajectories like that shown in
Fig. 4. The time interval in which the �i coefficient is nega-
tive is longer for decreasing noise intensities. This produces
a more pronounced minimum in the MGRC. For smaller
noise intensities the number of trajectories for which the par-
ticle enters into the well decreases and therefore the MGRC
increases, reaching the deterministic value �see Figs. 5�b�
and 6�.

In conclusion, we investigated the average escape time
from a metastable state in a cubic potential profile for differ-
ent initial unstable positions of the Brownian particles. The

two introduced measures �the behavior of the MFPT and of
the MGRC� furnish suitable tools to detect the lifetime of
metastable states in the presence of external noise, and, as so,
they can be alternatively used in many relevant circum-
stances, such as understanding activation processes in com-
plex systems characterized by energy landscape �2�.
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